PRIER – A Tool for Planning Multi-Pollutant Control Strategies

Richard Booth (URS)
George Warriner (URS)
Leo Makovsky (NETL)
Gordon Page (Consultant)

$\mathbf{PRIER} = \mathbf{\underline{P}}$ ower $\mathbf{\underline{R}}$ eliability $\mathbf{\underline{I}}$ mprovement & $\mathbf{\underline{E}}$ mission $\mathbf{\underline{R}}$ eduction

PRIER Program Goal

Identify and Verify Technologies and Systems that Reduce Multi-Pollutant Emissions by Improving Plant Performance

PRIER Technologies & Systems

Performance Improvement Results Reduce Air Optimize System **Emissions** Performance (Combustion, Unit Operation, Pollution Control) Reduce Coal Reduce Liquid Throughput **Effluents** Reduce Solid Wastes

PRIER Improvements are Real

Includes the Total Plant

Thermodynamic Police

PRIER Program Approach

- Initial Data Collection Visits estimate potential range for plant performance improvement
- Detailed PRIER Analysis validate initial visit estimates
- Field Studies validate new PRIER technologies
- Compendia capture, store, and disseminate knowledge

PRIER Program Results

- Potential Performance Improvements
- Example PRIER Technologies and Systems
- Field Study Status
- Compendia Status

Initial Data Collection Visits

Potential Range of Coal Plant Performance Improvement

 $^{^{\}rm a}$ Size: Small = < 500 MW; Medium = 500 to 1000 MW; Large = > 1000 MW

Detailed PRIER Analysis

Potential Range of Coal Plant Performance Improvement

 $^{^{\}rm a}$ Size: Small = < 500 MW; Medium = 500 to 1000 MW; Large = > 1000 MW

Example PRIER Technologies & Systems

PRIER Technology or System	Performance Improvement	Emissions Reduction
DCS Tuning	0.5 – 2 %	0.5 – 2%
Next Gen. Intel. Soot Blow	1 – 2 %	1 – 2 % plus
Combustion Optimization	0.1 – 0.5 %	0.1 – 0.5 % plus
Global Unit Optimization	0.1 – 0.5 %	0.1 – 0.5 % plus
Load Dispatch Optimization	1 – 5 %	1 – 5 %
Turbine Upgrade	5 – 7 %	5 – 7 %
Condenser Maintenance	1 – 2 %	1 – 2 %
Reduce Intake Water Temp	1 – 2 %	1 – 2 %

plus – additional specific pollutant reductions from system optimization (e.g., combustion system NO_x)

Field Studies

- Field Study No. 1
 - Next Generation Intelligent Sootblowing (NGISB)
 - Started in August 2003
 - New plant with variable coal feeds
- Additional Field Studies in 2003 and 2004

Compendia – Ultimate Success of the PRIER Program

Capture, validate, store, disseminate knowledge

Easy to use

Cost effective

Field study knowledge provides the basis of design

Conclusions

Conclusions

Reduced Emissions:
Coal Mining
Coal Preparation
Coal Transportation

Reduced Emissions:
Solid Waste (ash, scrubber sludge)
Transport and
Disposal

Reduce Multi-pollutant Emissions
Air emissions
Liquid effluents
Solid wastes

Reduce Greenhouse Gases

Reduce Resource Usage (e.g., Water)

